33856 measured reflections

 $R_{\rm int} = 0.041$

7543 independent reflections

6131 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Diphenylmethoxyphosphane- κP)(diphenylphosphanito- κP)(3,5,7-tribromotropolonato- $\kappa^2 O, O'$)palladium(II) methanol solvate

Gideon Steyl

Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa

Correspondence e-mail: geds12@yahoo.com

Received 17 August 2007; accepted 21 September 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.007 Å; R factor = 0.039; wR factor = 0.111; data-to-parameter ratio = 18.9.

The title compound, $[Pd(C_7H_2Br_3)(C_{12}H_{10}OP)(C_{13}H_{13}OP)]$ ·CH₃OH, the by-product of an attempted Suzuki-coupling reaction, has two different diphenylphosphane groups bonded to Pd and is the first structural example of a metal complex having a diphenylphosphanite anion $[-P(O)Ph_2]$ and a diphenylmethoxyphosphane molecule (MeOPPh₂) coordinated to the same metal centre. Molecules are linked by hydrogen bonds, Br···Br interactions [3.729 (1) Å] and π - π stacking interactions parallel to the *a* axis [interplanar distance 3.496 (8) Å and centroid-to-centroid distance 3.507 (1) Å].

Related literature

Common examples of the class of Pd—P-bonded compounds represented by the title compound have phosphinate and phosphane hydroxide ligands with a hydrogen-bond interaction between the oxo and hydroxo groups; see: Gebauer *et al.* (1992, 1995); Pryjomska *et al.* (2006).

Experimental

Crystal data

[Pd(C7H2Br3)(C12H10OP)- $\beta = 78.285 \ (7)^{\circ}$ (C₁₃H₁₃OP)]·CH₄O $\gamma = 72.121 \ (8)^{\circ}$ $M_r = 913.63$ V = 1650.0 (8) Å³ Triclinic, $P\overline{1}$ Z = 2a = 9.125 (3) Å Mo $K\alpha$ radiation b = 11.326 (4) Å $\mu = 4.33 \text{ mm}^{-1}$ c = 17.137 (3) Å T = 100 (2) K $0.19 \times 0.14 \times 0.04~\text{mm}$ $\alpha = 87.652 \ (8)^{\circ}$

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1998) $T_{\rm min} = 0.493, T_{\rm max} = 0.846$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	13 restraints
$wR(F^2) = 0.111$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 1.92 \text{ e} \text{ Å}^{-3}$
7543 reflections	$\Delta \rho_{\rm min} = -0.91 \ {\rm e} \ {\rm \AA}^{-3}$
399 parameters	

Table 1

Selected geometric parameters (Å, °).

Pd-O1	2.076 (3)	Pd—P2	2.2055 (12)
Pd-O2	2.140 (3)	Pd—P1	2.2267 (12)
D1-Pd-O2	75.61 (11)	O1-Pd-P1	92.64 (9)
D1-Pd-P2	178.23 (9)	O2-Pd-P1	168.03 (9)
D2-Pd-P2	102.66 (9)	P2-Pd-P1	89.07 (5)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C19-H19Br3	0.95	2.95	3.818 (5)	152
O5−H5···O3	0.84	2.01	2.740 (7)	144
C20−H20B···O2	0.98	2.30	3.143 (6)	144
$C12-H12\cdots O5^{i}$	0.95	2.56	3.435 (9)	154
C31–H31···Br1 ⁱⁱ	0.95	2.99	3.920 (6)	168

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2006); software used to prepare material for publication: *SHELXL97*.

Financial assistance from the University of the Free State and Professor A. Roodt is gratefully acknowledged. Mr L. Kirsten is acknowledged for the data collection. Part of this material is based on work supported by the South African National Research Foundation (NRF) under grant No. GUN

metal-organic compounds

2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2311).

References

Brandenburg, K. & Putz, H. (2006). DIAMOND. Release 3.0e. Crystal Impact GbR, Bonn, Germany.

- Bruker (1998). SADABS. Version 2004/1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). SAINT-Plus (including XPREP). Version 7.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gebauer, T., Frenzen, G. & Dehnicke, K. (1992). Z. Naturforsch. Teil B, 47, 1505-1512
- Gebauer, T., Frenzen, G. & Dehnicke, K. (1995). Z. Kristallogr. 210, 539-540.
- Pryjomska, I., Bartosz-Bechowski, H., Ciunik, Z., Trzeciak, A. M. & Ziolkowski, J. J. (2006). Dalton Trans. pp. 213–220. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
- Göttingen, Germany.

Acta Cryst. (2007). E63, m2613-m2614 [doi:10.1107/S1600536807046399]

(Diphenylmethoxyphosphane- κP)(diphenylphosphanito- κP)(3,5,7-tribromotropolonato- $\kappa^2 O, O'$)palladium(II) methanol solvate

G. Steyl

Comment

In the current paper the title compound, (I), is presented as an example of a by-product formed during the catalytic cycle. It should be noted that both a diphenylphosphanito and a diphenylmethoxyphosphane, Fig. 1, was formed from the initial starting diphenylnaphtolphosphane. In either case, the diphenylnaphtolphosphane moiety decomposed and in the one instance a Suzuki coupling occurred to form the diphenylmethoxyphosphane derivative. This product is in contrast to the more readily observed hydroxyl derivative.

The Pd—O and Pd—P bond distances only differ slightly, Table 1. This relative similarity in bond distances (Pd—P) might be due to the hydrogen bonding observed between the methanol solvate and the diphenylphosphaneoxide oxygen atom, Table 2. The P—O(Me) and P=O bond distances are significantly different indicating the bond order in which the oxygen atoms bond with the phosphorous atom.

Weak intra- and intermolecular interactions is observed in the solid state, see Table 2. The role of the bromo-atoms on the solid state arrangement can be observed from the intermolecular distances between Br₃...Br₇ [1 - x, 1 - y, 1 - z] and Br₅...Pd [1 - x, 1 - y, 1 - z] in the order of 3.729 (1) and 3.717 (1) Å, respectively. This interaction is further enhanced through π - π stacking of the cycloheptatriene rings systems of the bromo moieties with an interplanar distance of 3.496 (8) Å and a centroid-to-centroid distance of 3.507 (1) Å. The ordering of the solid state can be observed as stacking along the *a* axis, see Figure 2.

Experimental

The title compound was obtained unintentionally as the product of a Suzuki coupling reaction of diphenylnaphtolphosphane and bis(3,5,7-tribromotropolonato)palladium(II) in methanol (10 ml) solution. On evaporation of the solvent; crystals suitable for X-Ray crystallography was obtained.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 and 0.98 Å and with $U_{iso}(H) = 1.2$ times $U_{eq}(C \text{ aromatic})$ and $U_{iso}(H) = 1.2$ times $U_{eq}(C \text{ methyl})$. The final difference Fourier map had a large peak near Pd.

Figures

Fig. 1. Representation of the title compound (I), showing the numbering scheme and displacement ellipsoids (50% probability). For the carbon rings, first digit refers to ring number, second digit to atom in the ring. Hydrogen atoms omitted for clarity.

Fig. 2. Fraction of the unit cell showing the stacking pattern [symmetry codes: (a) x, -y, z - 1/2; (b) -x, -y, -z].

$(Diphenylmethoxyphosphane-\kappa P)(diphenylphosphanito-\kappa P)(3,5,7-tribromotropolonato-\kappa^2 O,O') palladium(II) methanol solvate$

Crystal data

[Pd(C ₇ H ₂ Br ₃)(C ₁₂ H ₁₀ OP)(C ₁₃ H ₁₃ OP)]·CH ₄ O	Z = 2
$M_r = 913.63$	$F_{000} = 896$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.839 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 9.125 (3) Å	Cell parameters from 5022 reflections
b = 11.326 (4) Å	$\theta = 2.4 - 27.7^{\circ}$
c = 17.137 (3) Å	$\mu = 4.33 \text{ mm}^{-1}$
$\alpha = 87.652 \ (8)^{\circ}$	T = 100 (2) K
$\beta = 78.285 \ (7)^{\circ}$	Plate, yellow
$\gamma = 72.121 \ (8)^{\circ}$	$0.19 \times 0.14 \times 0.04 \ mm$
V = 1650.0 (8) Å ³	

Data collection

Bruker APEXII area-detector diffractometer	7543 independent reflections
Radiation source: fine-focus sealed tube	6131 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.041$
Detector resolution: 512 pixels mm ⁻¹	$\theta_{max} = 27.5^{\circ}$
T = 100(2) K	$\theta_{\min} = 1.2^{\circ}$
ϕ and ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$k = -14 \rightarrow 14$
$T_{\min} = 0.493, T_{\max} = 0.846$	<i>l</i> = −22→22
33856 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.111$	$w = 1/[\sigma^2(F_o^2) + (0.0572P)^2 + 2.8917P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\text{max}} = 0.001$
7543 reflections	$\Delta \rho_{max} = 1.92 \text{ e} \text{ Å}^{-3}$
399 parameters	$\Delta \rho_{min} = -0.91 \text{ e } \text{\AA}^{-3}$
13 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. The solvent molecule in the asymmetric unit were were identified from the difference Fourier map. Refinement of the MeOH moiety was done with the *DFIX* command to place the C and O atoms at an idealized distance from each other and the ISOR command was used to attempt to restrain the C atom within a certain range.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Pd	0.79443 (4)	0.29918 (3)	0.25916 (2)	0.01933 (9)
Br1	0.35292 (5)	0.69319 (4)	0.31393 (3)	0.02862 (12)
Br2	0.05373 (5)	0.55669 (4)	0.59648 (3)	0.02661 (12)
Br3	0.57021 (5)	0.15579 (4)	0.51586 (3)	0.02441 (11)
P1	0.97836 (13)	0.11498 (10)	0.24798 (7)	0.0202 (2)
P2	0.92127 (13)	0.35250 (10)	0.14639 (7)	0.0224 (2)
01	0.6711 (3)	0.2547 (3)	0.36606 (19)	0.0240 (6)
O2	0.6024 (3)	0.4642 (3)	0.29453 (18)	0.0236 (6)
O3	1.1000 (3)	0.0763 (3)	0.17293 (19)	0.0255 (7)
O4	0.8531 (4)	0.4997 (3)	0.1320 (2)	0.0294 (7)
05	1.3757 (8)	-0.1108 (7)	0.1698 (5)	0.109 (2)
H5	1.2994	-0.0506	0.1907	0.164*
C1	0.5507 (5)	0.3391 (4)	0.4014 (3)	0.0205 (9)
C2	0.5083 (5)	0.4569 (4)	0.3591 (3)	0.0198 (8)

C3	0.3716 (5)	0.5589 (3)	0.3854 (3)	0.0199 (8)
C4	0.2530 (5)	0.5765 (4)	0.4518 (3)	0.0224 (9)
H4	0.1712	0.6531	0.4550	0.027*
C5	0.2366 (5)	0.4976 (4)	0.5147 (3)	0.0216 (9)
C6	0.3344 (5)	0.3816 (4)	0.5269 (3)	0.0220 (9)
H6	0.3041	0.3436	0.5753	0.026*
C7	0.4715 (5)	0.3140 (4)	0.4769 (3)	0.0196 (8)
C8	0.8745 (5)	-0.0001 (4)	0.2719 (3)	0.0228 (9)
C9	0.9531 (5)	-0.1131 (4)	0.2999 (3)	0.0257 (9)
Н9	1.0514	-0.1237	0.3145	0.031*
C10	0.8907 (6)	-0.2109 (4)	0.3071 (3)	0.0292 (10)
H10	0.9466	-0.2885	0.3258	0.035*
C11	0.7459 (6)	-0.1955 (5)	0.2870 (3)	0.0329 (11)
H11	0.7038	-0.2630	0.2905	0.039*
C12	0.6649 (6)	-0.0832 (5)	0.2620 (3)	0.0367 (12)
H12	0.5641	-0.0717	0.2502	0.044*
C13	0.7280 (5)	0.0145 (5)	0.2537 (3)	0.0321 (11)
H13	0.6709	0.0920	0.2354	0.038*
C14	1.0716 (5)	0.1175 (4)	0.3310 (3)	0.0222 (9)
C15	1.2223 (5)	0.1309 (4)	0.3165 (3)	0.0254 (9)
H15	1.2759	0.1347	0.2632	0.030*
C16	1.2936 (5)	0.1386 (4)	0.3793 (3)	0.0286 (10)
H16	1.3966	0.1461	0.3691	0.034*
C17	1.2151 (5)	0.1353 (4)	0.4570 (3)	0.0261 (10)
H17	1.2636	0.1415	0.5001	0.031*
C18	1.0648 (5)	0.1230 (4)	0.4721 (3)	0.0256 (9)
H18	1.0110	0.1205	0.5255	0.031*
C19	0.9936 (5)	0.1143 (4)	0.4091 (3)	0.0228 (9)
H19	0.8909	0.1061	0.4196	0.027*
C20	0.6949 (6)	0.5537 (5)	0.1206 (3)	0.0340 (11)
H20A	0.6740	0.6432	0.1132	0.051*
H20B	0.6214	0.5392	0.1675	0.051*
H20C	0.6811	0.5157	0.0734	0.051*
C21	0.9153 (5)	0.2799 (4)	0.0560 (3)	0.0267 (10)
C22	0.8548 (6)	0.1815 (4)	0.0572 (3)	0.0305 (10)
H22	0.8160	0.1496	0.1065	0.037*
C23	0.8513 (7)	0.1303 (5)	-0.0138 (3)	0.0376 (12)
H23	0.8115	0.0620	-0.0133	0.045*
C24	0.9044 (8)	0.1771 (5)	-0.0842 (3)	0.0484 (15)
H24	0.8996	0.1421	-0.1327	0.058*
C25	0.9657 (8)	0.2754 (5)	-0.0864 (3)	0.0516 (16)
H25	1.0032	0.3074	-0.1360	0.062*
C26	0.9716 (7)	0.3266 (5)	-0.0155 (3)	0.0404 (13)
H26	1.0142	0.3934	-0.0161	0.048*
C27	1.1224 (5)	0.3462 (4)	0.1445 (3)	0.0290 (10)
C28	1.2481 (6)	0.2606 (5)	0.0974 (4)	0.0435 (14)
H28	1.2306	0.2047	0.0631	0.052*
C29	1.4008 (6)	0.2571 (6)	0.1008 (4)	0.0552 (17)
H29	1.4879	0.1987	0.0686	0.066*

C30	1.4252 (7)	0.3370 (6)	0.1501 (4)	0.0560 (17)
H30	1.5297	0.3339	0.1518	0.067*
C31	1.3020 (7)	0.4221 (6)	0.1976 (4)	0.0453 (14)
H31	1.3212	0.4774	0.2317	0.054*
C32	1.1494 (6)	0.4265 (5)	0.1954 (3)	0.0328 (11)
H32	1.0633	0.4843	0.2286	0.039*
C33	1.460 (3)	-0.071 (2)	0.0948 (10)	0.289 (12)
H33A	1.4047	0.0150	0.0844	0.434*
H33B	1.4650	-0.1249	0.0504	0.434*
H33C	1.5675	-0.0775	0.1002	0.434*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd	0.01660 (16)	0.01855 (16)	0.02193 (18)	-0.00428 (12)	-0.00401 (13)	0.00306 (12)
Br1	0.0284 (2)	0.0192 (2)	0.0348 (3)	-0.00220 (17)	-0.0076 (2)	0.00673 (18)
Br2	0.0233 (2)	0.0228 (2)	0.0304 (3)	-0.00586 (17)	0.00139 (18)	-0.00407 (17)
Br3	0.0233 (2)	0.0216 (2)	0.0265 (2)	-0.00448 (16)	-0.00538 (18)	0.00626 (17)
P1	0.0175 (5)	0.0191 (5)	0.0250 (6)	-0.0055 (4)	-0.0072 (4)	0.0017 (4)
P2	0.0193 (5)	0.0220 (5)	0.0258 (6)	-0.0083 (4)	-0.0019 (5)	0.0016 (4)
01	0.0190 (15)	0.0222 (15)	0.0245 (16)	-0.0007 (12)	0.0000 (12)	0.0047 (12)
O2	0.0202 (15)	0.0210 (14)	0.0268 (17)	-0.0029 (12)	-0.0046 (13)	0.0053 (12)
03	0.0226 (16)	0.0240 (15)	0.0305 (18)	-0.0069 (12)	-0.0067 (13)	-0.0017 (13)
04	0.0295 (17)	0.0222 (15)	0.0352 (19)	-0.0089 (13)	-0.0025 (15)	0.0026 (13)
05	0.082 (4)	0.099 (5)	0.135 (6)	-0.005 (3)	-0.031 (4)	0.008 (4)
C1	0.019 (2)	0.0187 (19)	0.026 (2)	-0.0058 (16)	-0.0092 (17)	0.0024 (16)
C2	0.018 (2)	0.021 (2)	0.024 (2)	-0.0087 (16)	-0.0070 (17)	0.0011 (16)
C3	0.022 (2)	0.0127 (18)	0.027 (2)	-0.0057 (15)	-0.0083 (18)	0.0041 (16)
C4	0.019 (2)	0.019 (2)	0.029 (2)	-0.0058 (16)	-0.0054 (18)	-0.0037 (17)
C5	0.017 (2)	0.024 (2)	0.025 (2)	-0.0079 (16)	-0.0027 (17)	-0.0052 (17)
C6	0.024 (2)	0.023 (2)	0.021 (2)	-0.0102 (17)	-0.0062 (18)	0.0015 (17)
C7	0.019 (2)	0.0162 (18)	0.025 (2)	-0.0045 (15)	-0.0087 (17)	0.0042 (16)
C8	0.022 (2)	0.022 (2)	0.025 (2)	-0.0072 (17)	-0.0034 (18)	-0.0029 (17)
C9	0.022 (2)	0.024 (2)	0.030 (3)	-0.0060 (17)	-0.0029 (19)	-0.0011 (18)
C10	0.034 (3)	0.024 (2)	0.030 (3)	-0.0102 (19)	-0.006 (2)	0.0024 (19)
C11	0.034 (3)	0.040 (3)	0.031 (3)	-0.023 (2)	-0.003 (2)	0.001 (2)
C12	0.026 (2)	0.046 (3)	0.043 (3)	-0.019 (2)	-0.007 (2)	0.005 (2)
C13	0.024 (2)	0.033 (2)	0.041 (3)	-0.0101 (19)	-0.007 (2)	0.004 (2)
C14	0.020 (2)	0.0159 (18)	0.031 (2)	-0.0030 (15)	-0.0105 (18)	0.0004 (17)
C15	0.021 (2)	0.024 (2)	0.031 (3)	-0.0063 (17)	-0.0060 (19)	-0.0037 (18)
C16	0.022 (2)	0.030 (2)	0.037 (3)	-0.0094 (18)	-0.012 (2)	-0.001 (2)
C17	0.027 (2)	0.021 (2)	0.035 (3)	-0.0075 (17)	-0.017 (2)	0.0042 (18)
C18	0.031 (2)	0.0168 (19)	0.031 (3)	-0.0073 (17)	-0.012 (2)	0.0045 (17)
C19	0.020 (2)	0.0189 (19)	0.030 (2)	-0.0054 (16)	-0.0083 (18)	0.0054 (17)
C20	0.032 (3)	0.031 (2)	0.036 (3)	-0.006 (2)	-0.008 (2)	0.013 (2)
C21	0.030 (2)	0.026 (2)	0.024 (2)	-0.0110 (18)	0.0017 (19)	-0.0039 (18)
C22	0.035 (3)	0.032 (2)	0.031 (3)	-0.017 (2)	-0.012 (2)	0.004 (2)
C23	0.048 (3)	0.035 (3)	0.038 (3)	-0.017 (2)	-0.020 (3)	0.002 (2)

C24	0.080 (5)	0.041 (3)	0.028 (3)	-0.024 (3)	-0.012 (3)	-0.008 (2)
C25	0.087 (5)	0.044 (3)	0.025 (3)	-0.029 (3)	0.000 (3)	0.001 (2)
C26	0.062 (4)	0.034 (3)	0.027 (3)	-0.024 (3)	0.003 (2)	-0.004 (2)
C27	0.025 (2)	0.029 (2)	0.035 (3)	-0.0136 (19)	-0.002 (2)	0.003 (2)
C28	0.028 (3)	0.042 (3)	0.059 (4)	-0.014 (2)	0.004 (3)	-0.012 (3)
C29	0.022 (3)	0.056 (4)	0.081 (5)	-0.010 (3)	0.003 (3)	-0.012 (3)
C30	0.039 (3)	0.049 (4)	0.088 (5)	-0.028 (3)	-0.010 (3)	0.003 (3)
C31	0.046 (3)	0.055 (3)	0.050 (4)	-0.030 (3)	-0.020 (3)	0.002 (3)
C32	0.031 (3)	0.041 (3)	0.029 (3)	-0.015 (2)	-0.007 (2)	0.003 (2)
C33	0.295 (15)	0.303 (15)	0.274 (15)	-0.101 (10)	-0.053 (9)	0.001 (9)

Geometric parameters (Å, °)

Pd—O1	2.076 (3)	C14—C15	1.401 (6)
Pd—O2	2.140 (3)	C15—C16	1.386 (6)
Pd—P2	2.2055 (12)	C15—H15	0.9500
Pd—P1	2.2267 (12)	C16—C17	1.383 (7)
Br1—C3	1.902 (4)	C16—H16	0.9500
Br2—C5	1.907 (4)	C17—C18	1.392 (6)
Br3—C7	1.904 (4)	C17—H17	0.9500
Р1—ОЗ	1.499 (3)	C18—C19	1.389 (6)
P1—C14	1.806 (4)	C18—H18	0.9500
P1—C8	1.823 (4)	C19—H19	0.9500
P2—O4	1.618 (3)	C20—H20A	0.9800
P2-C21	1.801 (5)	C20—H20B	0.9800
P2—C27	1.809 (5)	C20—H20C	0.9800
O1—C1	1.273 (5)	C21—C26	1.380 (7)
O2—C2	1.273 (5)	C21—C22	1.384 (6)
O4—C20	1.435 (6)	C22—C23	1.378 (7)
O5—C33	1.488 (9)	C22—H22	0.9500
O5—H5	0.8400	C23—C24	1.357 (8)
C1—C7	1.412 (6)	C23—H23	0.9500
C1—C2	1.475 (6)	C24—C25	1.387 (8)
C2—C3	1.422 (6)	C24—H24	0.9500
C3—C4	1.376 (6)	C25—C26	1.385 (8)
C4—C5	1.385 (6)	C25—H25	0.9500
C4—H4	0.9500	C26—H26	0.9500
C5—C6	1.378 (6)	C27—C28	1.383 (7)
C6—C7	1.384 (6)	C27—C32	1.393 (7)
С6—Н6	0.9500	C28—C29	1.395 (8)
C8—C9	1.381 (6)	C28—H28	0.9500
C8—C13	1.394 (6)	C29—C30	1.358 (9)
C9—C10	1.384 (6)	С29—Н29	0.9500
С9—Н9	0.9500	C30—C31	1.372 (9)
C10—C11	1.391 (7)	С30—Н30	0.9500
C10—H10	0.9500	C31—C32	1.386 (7)
C11—C12	1.362 (7)	C31—H31	0.9500
C11—H11	0.9500	С32—Н32	0.9500
C12—C13	1.386 (7)	С33—Н33А	0.9800

C12—H12	0.9500	С33—Н33В	0.9800
C13—H13	0.9500	С33—Н33С	
C14—C19	1.387 (6)		
O1—Pd—O2	75.61 (11)	C16—C15—C14	120.3 (4)
O1—Pd—P2	178.23 (9)	C16—C15—H15	119.8
O2—Pd—P2	102.66 (9)	C14—C15—H15	119.8
O1—Pd—P1	92.64 (9)	C17—C16—C15	120.1 (4)
O2—Pd—P1	168.03 (9)	С17—С16—Н16	120.0
P2—Pd—P1	89.07 (5)	С15—С16—Н16	120.0
O3—P1—C14	110.12 (19)	C16—C17—C18	120.0 (4)
O3—P1—C8	109.78 (19)	С16—С17—Н17	120.0
C14—P1—C8	105.7 (2)	С18—С17—Н17	120.0
O3—P1—Pd	120.99 (13)	C19—C18—C17	120.0 (4)
C14—P1—Pd	102.86 (14)	C19—C18—H18	120.0
C8—P1—Pd	106.28 (15)	C17—C18—H18	120.0
O4—P2—C21	104.4 (2)	C14—C19—C18	120.4 (4)
O4—P2—C27	97.64 (19)	C14—C19—H19	119.8
C21—P2—C27	108.3 (2)	C18—C19—H19	119.8
O4—P2—Pd	111.14 (13)	O4—C20—H20A	109.5
C_21 — P_2 — P_d	117 19 (15)	04—C20—H20B	109.5
C_27 — P_2 — P_d	115 78 (17)	H20A-C20-H20B	109.5
C1 - O1 - Pd	117.4 (3)	04-C20-H20C	109.5
$C_2 - C_2 - Pd$	115 1 (3)	$H_{20}A - C_{20} - H_{20}C$	109.5
$C_{20} - O_{4} - P_{2}$	120.7(3)	H20B-C20-H20C	109.5
C33-O5-H5	109 5	$C_{26} = C_{21} = C_{22}$	120 4 (4)
01 - C1 - C7	118 5 (4)	$C_{26} = C_{21} = P_{22}$	120.1(1) 117.7(4)
01 - C1 - C2	115.8 (4)	$C_{22} = C_{21} = P_{2}$	1219(4)
C7-C1-C2	125 7 (4)	$C_{23} - C_{22} - C_{21}$	121.5(1)
$0^{2}-0^{2}-0^{3}$	1196(4)	C^{23} C^{22} H^{22}	120.2
02 - 02 - 03	115.9 (4)	$C_{21} = C_{22} = H_{22}$	120.2
C_{2}^{-} C_{2}^{-} C_{1}^{-}	124 5 (4)	C_{24} C_{23} C_{22}	120.2
$C_4 - C_3 - C_2$	121.3(1) 1318(4)	C_{24} C_{23} H_{23}	119.9
C4-C3-Br1	115.6 (3)	$C_{22} = C_{23} = H_{23}$	119.9
C^2 C^3 Br^1	112.6 (3)	$C_{22} = C_{23} = C_{24} = C_{25}$	120.9 (5)
$C_{2}^{3} = C_{3}^{4} = C_{5}^{5}$	128.8 (4)	$C_{23} = C_{24} = C_{23}$	119.6
C_{3} C_{4} C_{4} H_{4}	115.6	$C_{25} = C_{24} = H_{24}$	119.6
C_{5} C_{4} H_{4}	115.6	$C_{25} = C_{25} = C_{24}$	119.3 (5)
C6_C5_C4	129.1 (4)	$C_{20} = C_{23} = C_{24}$	119.3 (5)
C_{0}	129.1(4) 114.9(3)	$C_{20} = C_{25} = H_{25}$	120.3
C_{0} C_{3} B_{12}	114.9(3)	$C_{24} = C_{25} = H_{25}$	120.3
C5-C6-C7	110.0(3)	$C_{21} - C_{20} - C_{23}$	119.0 (3)
C5-C6-H6	116.1	C_{25} C_{26} H_{26}	120.2
C7_C6_H6	116.1	$C_{23} = C_{20} = H_{20}$	120.2
$C_{1} = C_{2} = C_{1}$	132.1 (4)	$C_{28} = C_{27} = C_{32}$	117.7(3)
C6_C7_Br3	132.1 (7) 1143(3)	$C_{20} - C_{27} - P_{2}$	122.0 (4)
$C_{1} - C_{7} - B_{13}$	113.6 (3)	C_{27} C_{27} C_{28} C_{29}	110.1 (+)
$C_1 - C_7 - D_{13}$	118 4 (4)	$C_2 = C_2 $	120.3
$C_{0} = C_{0} = C_{13}$	118.4 (4)	$C_2 = C_2 $	120.3
$C_{2} = C_{0} = 1$	110.2(3) 1220(3)	C_{2} C_{20} C_{20} C_{20} C_{20}	120.3
015-00-11	122.7 (3)	030-027-020	120.1 (0)

C8—C9—C10	120.9 (4)	С30—С29—Н29	119.9
С8—С9—Н9	119.5	С28—С29—Н29	119.9
С10—С9—Н9	119.5	C29—C30—C31	121.4 (6)
C9—C10—C11	119.9 (4)	С29—С30—Н30	119.3
C9—C10—H10	120.1	С31—С30—Н30	119.3
C11—C10—H10	120.1	C30—C31—C32	119.3 (5)
C12—C11—C10	119.6 (4)	С30—С31—Н31	120.3
C12—C11—H11	120.2	С32—С31—Н31	120.3
C10-C11-H11	120.2	C31—C32—C27	119.9 (5)
C11—C12—C13	120.6 (5)	С31—С32—Н32	120.0
C11—C12—H12	119.7	С27—С32—Н32	120.0
C13—C12—H12	119.7	O5—C33—H33A	109.5
C12—C13—C8	120.5 (5)	O5—C33—H33B	109.5
C12—C13—H13	119.8	H33A—C33—H33B	109.5
С8—С13—Н13	119.8	О5—С33—Н33С	109.5
C19—C14—C15	119.2 (4)	Н33А—С33—Н33С	109.5
C19—C14—P1	121.4 (3)	H33B—C33—H33C	109.5
C15—C14—P1	119.2 (4)		
O1—Pd—P1—O3	170.90 (17)	Pd—P1—C8—C13	33.4 (4)
O2—Pd—P1—O3	-178.3 (4)	C13—C8—C9—C10	2.3 (7)
P2—Pd—P1—O3	-9.57 (15)	P1C8C10	-169.7 (4)
O1—Pd—P1—C14	-65.82 (17)	C8—C9—C10—C11	-0.9 (7)
O2—Pd—P1—C14	-55.0 (4)	C9—C10—C11—C12	-1.6 (8)
P2—Pd—P1—C14	113.71 (15)	C10-C11-C12-C13	2.5 (8)
O1—Pd—P1—C8	44.99 (18)	C11—C12—C13—C8	-1.0 (8)
O2—Pd—P1—C8	55.8 (4)	C9—C8—C13—C12	-1.4 (7)
P2—Pd—P1—C8	-135.49 (16)	P1-C8-C13-C12	170.2 (4)
O2—Pd—P2—O4	9.33 (17)	O3—P1—C14—C19	-160.9 (3)
P1—Pd—P2—O4	-168.29 (14)	C8—P1—C14—C19	-42.4 (4)
O2—Pd—P2—C21	-110.6 (2)	Pd—P1—C14—C19	68.8 (3)
P1—Pd—P2—C21	71.77 (18)	O3—P1—C14—C15	23.2 (4)
O2—Pd—P2—C27	119.52 (19)	C8—P1—C14—C15	141.7 (3)
P1—Pd—P2—C27	-58.09 (18)	Pd—P1—C14—C15	-107.1 (3)
O2—Pd—O1—C1	-1.4 (3)	C19—C14—C15—C16	1.1 (6)
P1—Pd—O1—C1	176.3 (3)	P1-C14-C15-C16	177.2 (3)
O1—Pd—O2—C2	-1.1 (3)	C14—C15—C16—C17	-1.2 (7)
P2—Pd—O2—C2	179.3 (3)	C15-C16-C17-C18	0.7 (6)
P1—Pd—O2—C2	-12.3 (6)	C16—C17—C18—C19	-0.2 (6)
C21—P2—O4—C20	62.7 (4)	C15—C14—C19—C18	-0.6 (6)
C27—P2—O4—C20	174.0 (4)	P1-C14-C19-C18	-176.6 (3)
Pd—P2—O4—C20	-64.6 (4)	C17—C18—C19—C14	0.2 (6)
Pd—O1—C1—C7	-175.5 (3)	O4—P2—C21—C26	46.2 (5)
Pd—O1—C1—C2	3.4 (5)	C27—P2—C21—C26	-57.1 (5)
Pd—O2—C2—C3	-176.2 (3)	Pd—P2—C21—C26	169.6 (4)
Pd—O2—C2—C1	3.2 (4)	O4—P2—C21—C22	-133.0 (4)
01—C1—C2—O2	-4.4 (6)	C27—P2—C21—C22	123.7 (4)
C7—C1—C2—O2	174.4 (4)	Pd—P2—C21—C22	-9.5 (5)
O1—C1—C2—C3	174.9 (4)	C26—C21—C22—C23	0.1 (8)
C7—C1—C2—C3	-6.3 (7)	P2—C21—C22—C23	179.2 (4)

O2—C2—C3—C4	-179.3 (4)	C21—C22—C23—C24	-1.0 (8)
C1—C2—C3—C4	1.4 (7)	C22—C23—C24—C25	1.2 (10)
O2—C2—C3—Br1	1.0 (5)	C23—C24—C25—C26	-0.3 (10)
C1—C2—C3—Br1	-178.3 (3)	C22—C21—C26—C25	0.8 (9)
C2—C3—C4—C5	2.1 (8)	P2-C21-C26-C25	-178.4 (5)
Br1—C3—C4—C5	-178.3 (4)	C24—C25—C26—C21	-0.6 (10)
C3—C4—C5—C6	0.0 (8)	O4—P2—C27—C28	-129.7 (5)
C3—C4—C5—Br2	179.8 (4)	C21—P2—C27—C28	-21.7 (5)
C4—C5—C6—C7	-2.4 (8)	Pd—P2—C27—C28	112.3 (4)
Br2—C5—C6—C7	177.7 (4)	O4—P2—C27—C32	53.5 (4)
C5—C6—C7—C1	-0.8 (8)	C21—P2—C27—C32	161.6 (4)
C5—C6—C7—Br3	-179.2 (4)	Pd—P2—C27—C32	-64.4 (4)
O1—C1—C7—C6	-175.0 (4)	C32—C27—C28—C29	-0.9 (9)
C2—C1—C7—C6	6.2 (7)	P2-C27-C28-C29	-177.5 (5)
O1—C1—C7—Br3	3.3 (5)	C27—C28—C29—C30	0.1 (10)
C2C1C7Br3	-175.5 (3)	C28—C29—C30—C31	0.2 (11)
O3—P1—C8—C9	72.5 (4)	C29—C30—C31—C32	0.1 (10)
C14—P1—C8—C9	-46.2 (4)	C30—C31—C32—C27	-0.9 (8)
Pd—P1—C8—C9	-155.0 (3)	C28—C27—C32—C31	1.2 (8)
O3—P1—C8—C13	-99.1 (4)	P2-C27-C32-C31	178.0 (4)
C14—P1—C8—C13	142.2 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C19—H19…Br3	0.95	2.95	3.818 (5)	152
O5—H5···O3	0.84	2.01	2.740 (7)	144
С20—Н20В…О2	0.98	2.30	3.143 (6)	144
C12—H12···O5 ⁱ	0.95	2.56	3.435 (9)	154
C31—H31···Br1 ⁱⁱ	0.95	2.99	3.920 (6)	168
Symmetry codes: (i) $x-1$, y , z ; (ii) $x+1$, y , z .				

Fig. 1

Fig. 2

